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MS 39406-5046, USA 
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Abstrad. ? l e  lacunarity is computed for randomly diluted two-dimensional lattices in 
terms of the chemical distance. The crossover behaviour and the question of universality 
are discussed. 

Fractal lattices are not translationally invariant and the mass distribution around each 
occupied site is different from site to site. The fractal dimension characterizes only the 
average of the mass distribution; the fluctuation around the average is characterized 
by the lacunarity which may be defined as the relative mean-square width of the 
distribution. The lacunarity has been studied in thermal phase transitions as a parameter 
which may prove relevant for the king critical behaviour in deterministic fractals [l-81. 
The purpose of this letter is to study the lacunarity with random fractals. 

Random fractals do indeed show remarkable fluctuation phenomena (for a review, 
see [9]). Some time ago, Coniglio et a/ [lo] asked the question: when large percolation 
clusters are simulated on a computer many times, does the cluster number N ,  fluctuate 
from sample to sample in the ‘usual’ way like the particle number in an ideal gas for 
which the compressibility never diverges, or does it fluctuate in the ‘critical’ way like 
the particle number in a real gas for which the compressibility diverges near the critical 
point? The fluctuation turns out to be equal to the square root of the average cluster 
number, as in the ‘usual’ way. But the average cluster number itself sharply peaks only 
near the percolation threshold, as in the ‘critical’ way. Stauffer [ l l ]  and Coniglio and 
Stauffer [12] studied the fluctuation of S,.,, the number of lattice sites of the largest 
cluster, and Kapitulnik et al [ 131 studied the fluctuation of M( L) ,  the number of sites 
within a volume of Ld that surrounds an occupied site of the spanning cluster. Both 
quantities fluctuate in the ‘critical’ way; the fluctuation of M ( L )  is the same as, not 
the square root of, the average of M ( L ) .  Moreover, when these quantities are divided 
by Ld, the results scale with L like the order parameter and therefore the fluctuation 
of M (  L )  is the percolation analogue of the diverging compressibility (or the magnetic 
susceptibility) [ll-141. In terms of lacunarity, all of this can be summarized by saying 
that the lacunarity is scale independent. This suggests that the local details are irrelevant, 
and we will argue shortly that the lacunarity is indeed universal for all lattice structures. 

The mass fluctuation and the consequent lacunarity are computed in this report 
for randomly diluted two-dimensional lattices using the chemical distance (e.g. see 
[15, 161) rather than the Pythagorean distance. Our original purpose in using the 
chemical distance was to take into account the fact that the percolation takes place 
only through the connected pores. This turns out to be not crucial, but it saves substantial 
computer time. Thus we define the mass at  a chosen site as the total number of active 
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sites which can be reached (from the chosen site) within the chemical distance of n, 
or M ( i ,  n ) ,  where the first argument represents the lattice site. Since M ( i ,  n) is different 
from site to site, an average is taken over all lattice sites to obtain ( M ( n ) ) .  The chemical 
dimension D is defined by the average asymptotic behaviour, ( M ( n ) ) - n D . ’  The 
lacunarity is then defined as the relative root mean-square width of the distribution, i.e. 

L ( n )  = AM(n)/(M(n)) (1) 

A M ( n )  = ( ( M ( n ) 2 ) - ( M ( n ) ) 2 ) 1 ’ 2 .  (2) 

where 

We consider four different two-dimensional lattice structures; square, triangular, 
hexagonal and Kagome. The initial lattice, which contains approximately N = 28 900 
active sites, is properly wrapped around to satisfy the periodic boundary conditions. 
A randomly chosen group of N, sites is then turned into inactive (impure) sites. 
Consider first the cases of p = ( N  - N < ) /  N < pc  (the percolation threshold). For p 
slightly less than p c ,  L ( n )  begins with a small value and stays with very little change 
until n reaches a ‘turning point’ where it begins to fall off, as shown in figure 1. As p 
is decreased further, the turning point is pushed further out, but the fall-off follows 
the same power law, L ( n ) -  n-’. We find p=l.l*O.l, which is reasonably close to 
the exact value p = d / 2  = 1 (see below). Finally when the percolation threshold is 
reached, the lacunarity of the percolating cluster does not fall off any more; it maintains 
a constant value for all values of n, as shown in figure 2. 

Flgure 1. Lacunarity for p =0.95>p,. 

The turning point is marked by the percolation correlation length 5, and the above 
crossover behaviour may be summarized by: 

where A(x) - constant for n << 5, and A(x) - x-~ ’ ’  for n >> 5. It is interesting to note 
that the degree of homogeneity of the scaling crossover function is zero. This gives 
more meaning to the notion of self-similarity which exists in the region n << 6 and may 
be manifested by the real space renormalization [17,18]. The order parameter is 
invariant under the renormalization which shrinks the length scale and lowers the 

L(n, 5 )  = M n / 5 )  (3) 
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Figure 2. Lacunarity of percolating clusters. 

‘contrast’. What about the fluctuation and the lacunarity? The fluctuation is variant, 
but the lacunarity is invariant, under the renormalization. 

The region n < 5 is the fractal region [14], in which both M ( n )  and AM( n )  follow 
the same power law, nD, and the region n > 5 is the homogeneous region (14), in 
which M ( n ) - n d ,  and A M ( n ) - n d / ’ .  The crossover behaviour of M ( n )  and A M ( n )  
are given by [9,13, 141: 

M ( n ,  O =  n D m ( n / O  (4) 

AMb, 5) = n D p ( n / 5 )  (5) 

where m(x)-constant for n < c ,  and m ( x ) - x d - D  for n > { ;  and 

where p(x)-constant, for n < ( ,  and ~ ( X ) - X ~ / * - ~ ,  for n >  .$ The fact that the mass 
fluctuation is not ‘critical’ in the homogeneous region was reflected in the fall-off 
exponent of the lacunarity p = d/2. For the chemical dimension, we find D = 1.6k0.1 
from the results shown in figure 3; a more accurate value is D =  o d d , =  1.89/1.13 = 
1.68, where D,is the fractal dimension (21), and d,  is the minimum dimension [19,20]. 

The chemical distance in (1) may be converted into the Pythagorean distance in 
the following way. Consider a percolating cluster on a large lattice N x N. For a given 
value of n < N, one may assume that M ( i ,  n )  is the mass of a finite spanning cluster 
which spans on a finite lattice of linear sire n. The linear size is equal to n because, for 
a given value of chemical distance n, the maximum possible Pythagorean distance is 
n. Corresponding to each lattice site i, there is a ‘spanning’ cluster whose mass is 
M ( i ,  n ) .  Thus, by sweeping through all occupied lattice sites i, one collects an ensemble 
of ‘spanning’ clusters. Our site average is the same as the usual ensemble average. 
Following Stauffer [ I l l ,  we may treat 

F ( n )  = ( ( M ( n ) 2 ) - ( M ( n ) ) 2 ) / n d  (6) 
as a scale-dependent percolation analogue of the magnetic susceptibility. The lacunarity 
may then be written entirely in terms of normalized percolation quantities as 

L ( n )  = n-d/2F(n)’/Z/(m(n)) (7) 
where ( m ( n ) )  = ( M ( n ) ) / n d  is the normalized order parameter. 
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Figure 3. Plot of ( M ( n ) )  for percolating clusten. The connecting lines represent the best 
power-law fit. The logarithmic scale o f t h e  vertical axis is arbitrary; each curve has been 
arbitrarily shifted t o  avoid overcrowding. 

Written in this form, it is easy to see the scale-independence and the universality 
of the lacunarity. According to the finite-size scaling theory [21], ( m ( n ) ) -  K O ’ ” ,  and 
F(n) - n?’”. The percolation hyperscaling law, y + 2 p  = dv, then leads to the scale- 
independent behaviour. Invoking the finite-size scaling ansatz of Privman and Fisher 
[22,23] with the ‘ghost field’ [24] serving the role of magnetic field, one can also easily 
see that the system-dependent metric which appears in the numerator and the 
denominator of (7) are cancelled out leaving only system-independent derivatives of 
the universal scaling function. It seems fair to regard the results of figure 2 as bearing 
out this prediction. 

As shown by (7), the lacunarity is a cumulant ratio for the percolation order 
parameter. Similar cumulant ratios of higher orders have played important roles for 
thermal phase transitions (see, for example, Binder in [23]). Binder’s fourth-order 
cumulant is scale independent at the critical temperature, as is the lacunarity at the 
percolation threshold. 

The author wishes to thank the referee for several valuable suggestions. He also wishes 
to thank Y Leroyer for discussions and encouragement, D Stauffer and V Privman for 
suggestions which led to the scaling arguments, and J Main for computational assist- 
ance. This research was supported by a grant from the Research Corporation, and by 
the Donors of the Petroleum Research Fund administered by the American Chemical 
Society. 
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